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then (6) is over-all asymptotically stable, i.e. any of its solutions approach some stable 
equilibrium as t--r foe. 

The estimate (11) is a generalization of a similar estimate by Iudovich /3/: 2oi-bb,<O 
which was obtained using the Liapunw function, 

Note 1. When r,+i, the right-hand side of inequality (11) approaches + 00. Hence 
for fixed bl and a1 an rl>l, will always be found that satisfies condition (11). 

Note 2. Sometimes it is interesting to consider small b, /4/. Selecting in that case 
h = b1/2 we obtain from (11) the following condition of global asymptotic stability: 
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THE LAWS OF VARIATION OF ENERGY AND MOMENTUM FOR ONE-D IklENSIONAL 
SYSTEMS WITH 110VING MOUNTINGS AND LOADS* 

A.I. VBSNITSKI, L.E. KAPLAN, and G.A. WMCIN 

The self-consistent dynamic behaviour of a one-dimensional system with a 
moving load is considered. The natural boundary conditions, previously 
obtained from the variational Hamiltonian principle /l/ for the self-con- 
sistent problem of the dynamics of one-dimensional systems, when theboundary 
motions are not specified, are used to show that the motion of the load 
results in the appearance of additional forces that are proportional to 
the load velocity. Bxpressions are obtained in terms of the density of the 
Lagrange function for the wave pressure, the wave energy flux, the wave 
momentum, the energy transport velocity, the work of the forces that vary 
the system parameters, and the distributed recoil forces that occur when 
waves propagate alonga non-uniform system. The radiation conditions are 
discussed in the class of systems considered. The critical velocities of 
the load moving along a Ttioshenko beam are determined. 

1. Consider a holonomic system with ideal constraints, consisting of a one-dimensional 
system along which a concentrated load is displaced, consistent with the motion of adistributed 
system. 
L Let x be a Cartesian coordinate along the one-dimensional system, t be the time, and U = 
((=, l):a $~<b, a<t(p} be some rectangular region in the plane z,t. We assume that the mot- 
ion of the load is defined by some function 2 = X (0. doubly differentiable in [a, 81, such 
that the curve K = ((z, t): z = x(t), a<t<@]lies in region D and divides it into parts as follows: 

D, = ((2. q: a < 2 < x (9, u< t< B). D, = ((2, t): x (t) f z < b. 
a<ta;BI 

and that the law of motion of the distributed system is defined by some vector function con- 
tinuous in D 

“(I. q = 1 
u1 (z, t) = (u,'@, t), . . ., %%l (2, 0). (0, :) = 4 
u* (2, t) = (4~ (I. 0, . . ., +I’ (5 0). (I, t) = D, 

where the vector functions ~1 (2. t) and uz (z. t) are doubly continuously differentiable in reg- 

ions D1 and I)., respectively. 
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Thus curve K is a possible line of discontinuity of the vector function u(c,~) in region 

LI, and, conversely, the discontinuity line of the derivatives Of the vector function u (I, t) 

in region D can only be the line K. 
LetL (t,t,u,ut,U,) be the density of the Lagrange functions of the distributed system, and 

Lo (t, X. x'. uO* u") be the Lagrange function of the load (I and Lo are doubly differentiable fun- 

ctions u'(t)=u(~(t),t)of their arguments). Then the relations that specify the equations of 

motion of the system and conditions on the moving boundary have the form 

&- -&. --&~~+p=o, (z,t)EIntD,, v=l,Z (1.1) 

Lx” - + Lx.0 + go0 = [L - (a, L, - XXJ (1.2) 

IUJ = 0 (1.3) 

Lfp - $L;..+q”=[L,-x*L*] (1.4) 

where for brevity the scalar product of the vectors is denoted by v= ut,w= US, (., *), and I.1 
is the difference between the limit values of the functions on the two sides of curve K. Here, 
the dissipative effects caused by the dissipating forces cl* so. go0 are taken into account. 

Note that, as applied to a number of special cases, the question of correct conditions 

at the moving boundaries were considered in /2-4/. 
Formulas (1.4) that express the balances of generalized forces acting on the load show 

that, unlike the stationary load, the moving load is subjected to inertia forces - COmpOnentS 

of the vector XZ,- proportional to the velocity of motion %'.In view of the fact that in the 
dynamic theory of one-dimensional elastic systems these forceswere,as a rule, neglected /5- 
J/, it is interesting to estimate their magnitude. For instance, for pit elevator cables, 
where the velocity of transverse waves is 20-70 m/set and the elevator velocity is x'= 8-G 
m/set, the ratio of the inertia forces to the shear forces is 0.1-0.4. It is obvious that, 
when calculating the dynamic behaviour of such systems , allowance must be made for these 
forces. 

Expressions for the inertia forces can be obtained not only from variational principles. 
This can be shown using the example of an absolutely smooth string on which a bead of mass m 
slides at constant velocity. To determine the shear force acting on the movingbeadwe will 
write the equation of the string transverse oscillations in a coordinate system attached to 
the bead 

-&J( 
aR 

Yt*-cYI*))=~. R=V’-c’~)+,t+$ut, 

where Z* and t* are connected with the original coordinates by the Galilean transformation 
2. = I - Cf, t* = t . On the left-hand side we have here the rate of variation of the momentum 

density, and on the right-hand side the gradient of the shear force R. Knowing it, we can 
construct the equation of transverse motion of the bead. Reverting to the original coordin- 
ates, we obtain 

mu" (ct, 1) = W% + W!:) I%&* - (Nn,+ ePW)I,,*_O 

where c&W is the force of inertia. 
It is interesting to note that in electrodynamics , when solving problems with moving 

boundaries, formulas for the transformation of the electric field E and the magnetic field H 
are used in accordance with the special theory of relativity /El/ and, consequently, the 
boundary conditions are always obtained in the form (1.4). Indeed, by introducing the single- 
scalar definition for plane electromagnetic waves, setting H= -U&E= u,, and taking into 
account that L= (eE’- @)/2 (e and c are the permittivity and permeability respectively), 
from Eq.(1;4) we obtain, for example, the condition for the fields on a moving discontinuity 
of the parameters (e and p) of the medium IR--X'eEJ= 0, given in /9,10/. 

When there are no external and dissipative forces (go0 =O) the motion of the load occurs 
due to the action of wave pressure forces on each side of the curve K, which by Eg.(1.2), are 
expressed by the formulas 

D- (w7 qJ + X'WP Lo)Lx(r,*o 

The magnitude of these forces may be considerable even in the case of a fixed boundary_ 
For instance, for a circular bar executing flexural oscillations, a stress 0 z i0' @P/A') Euo= 
OCCUTS in the mOUntimp (d is the bar diameter, 1, is the wavelength, E is the modulus of 
elasticity and u0 the amplitude of transverse deflections), In particular, when +== d and 
I- iOd the stress is azW*E, i.e. it is comparable with the ultimate stress admissible 

for metals. 
If the load moves, the wave pressure force may increase. 

tude can be considerable, 
Thus, for a string its magni- 

even if the intensity of the waves &pinging on the wave boundary 
is as small as desired /ll/. 
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2. Using (1.11 x.83 can show that in each region htt)ojv= i,2)the 
hold: as 

-g+;i;."-L,+(v.*), h = (V,L,)-Iit, s = (v,L*) 

$$+$$=A,-(w.pJ, p E-(W,L*)) T=L-_(W,L,) 

following relations 

(2.1) 

where k(t,t) is the density of the Xaailtonian function of the distributed system, and T(z,~) 
is the wave pressure force at cross section x, as follows from (1.2). 

For a stationary system (~~-0) when there are no external and dissipative forces (g= o) 
the first of formulas (2.1) represents the energy variation in an element of the distributed 
system due to its flow through the boundary of the element. Consequently, the quantity S (~,t) 
must be regarded as the wave-energy flux. Similarly the quantity pfx, t) is the wave momentum 
density. Thus Eqs.(2.1) are the local laws of variation of the wave energy and momentum. 

Note that V = S/h is,the velocity of wave-energy transport (the group velocity /12/). 
It can be shown that, for instance, in the case of a stretched string, for quasiharmonic 
waves the mean velocity V over a period is d@dk (Q is the frequency and k is the wave 
nu&er), which is the same as the approximate expression for the group velocity /13/. 

The functions A(z,Q,S(z, ~),p(x,t), Tfz,flhave a discontinuity in the region D along the curve 
K. Using (1.2) and (1.4) it can be shown that the respective conditions at the discontinuity, 
which are essentially the laws of variation of the load energy and momentum, have the form 

where ho and p” 
The following 

whole hold: 

dlP,‘df = -_IS - fkl - Lt’ + (a’“, $7 -I- x’qoO (2.2) 
W/&r = -_[T - x’el -t- Lx” + so 
ho = x-L,.” + (II’“, L,.,o) - Lo, p“ = L,.” 

are the Hamiltonian function and mcmentum of the load respectively. 
global laws of variation of the energy and momentum for the system as a 

dfi 
-;ii-=--SITA-<I*, - L,O + ((5 q), i- W”, 9”) + %‘Po” (2*3) 

where H= th, -the and P= cp,+p* are the Hamiltonian function and momentum of the complete 
system, respectively, and the angular brackets indicate integration with respect to x from 
a to b. 

It is seen from Eqs.(2.3) that an increase in wave energy in the case of fixedboundaries 
is only possible when the forces do positive work that changes the system parameters, i.e. 
when (‘LO + L:“) > 0. A change in momentum, as follows from (2.4)‘ can occur not only because 
of the pressure T at the boundaries ==(I and f== b of the elastic force LX”, andbecause 
of the dissipative and external forces, but also due to the recoil forces CL,,, resulting 
from distributed reflection of the waves as they propagate along an inhomogeneous system. 

To investigate the radiation conditions the first condition at the discontinuity (2.2) 
can be used. The exprassions (S - fh)&_itja appearing here define the wave -energy flux on each 
side of'curve if. Hence the criterion for radiation to occur into a distributed system with 
a moving load can be written in the form 

IIS - X’hi I > 0 (2.5) 

Example 1. Consider an infinitely long line through which, at cross section Jz = 7. (I) 
a given current I flows. The density of the Lagrange function for the line is written in the 
form L=(CP-- iv3[2, where V and J are the voltage and current in the line, and C and A 
axe the capacitance and inductance per unit length. Changing to the single-scalar definition, 
setting / = -A-'u,, V= ~1~ and using (2.5), we find that radiation occurs, when 

1 [S - XXI 1 = 1 A-y- (I - C&Q”) (U~~l/2 I > 0 

Hence follows the well-known condition for the source velocity /l-4,15/ for which Cherenkov 
radiation occurs: x' - &(CA)"", where {CA)-" is the velocity of propagation ofelectromag- 
netic waves in the line. 

Example 2. For the Timoshenka beam we have 

L = (p#i&'+ plqQ -El& - %GF 0% - 9)' - NG)/Z 

Here s (2, 0 is the transverse deflection of the middle line of the beam, ip(x,t) is the angle 
of rotation of the cross section, p is the specifi'c density, F is the area of Cross section, 
J is the moment of inertia of the section, E and F are the moduli of elasticity, fc is the 
Timoshenko coefficient, and N is the strain. 

By Eq.(2.5) one of the beam critical velocities (which correspond to the boundaries of 
the radiation region), is 
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If, in addition, it is assumed that the load moves at uniform velocity and the solutions 
on the left and right of it are harmonic, two more critical velocities are defined 

8' = j= (E/P)": XI' = f ((N/@fl) + (Z~Cl@P)))"' 
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ON THE LAW OF ANGULAR MOt4ENTUM VARIATION OF A 
SPHERE ROLLING ON A STATIONARY SURFACE* 

A.S. SUMBATOV 

The rolling of a homogeneous sphere without friction on a stationary 
surface is considered. The forms of surfaces are established, and the axes 
corresponding to them, relative to which the sphere angular momentum variation 
is determined, are defined by the same differential equation, as if the 
axes were stationary. 

1. The theorem of the variation of the angular momentum 
ative to an arbitrary pole A has the form /l/ 

K, of a mechanical system rel- 

K,'+Mv,Xvg=~momAR+r,mom,F (1.1) 

Here v,, is the velocity of the point A in fixed space, MV~ is the momentum of the 
body, and the right-hand side of (l.l), is the sum of the principal moments about the point 
A of the constraint reactions and the active forces operating on the system. 

Suppose some axis AL constantly pass through the moving point A, and let e be the unit 
vector of that axis. If the constraints at each instant of time allow a virtual rotation of 
the system as a single rigid body about the AL axis and the kinematic condition 

M(v,, vA x e)+ (4,e') = 0 (1.2) 
is satisfied /2/, then from (1.1) we have the scalar equation 
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